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ABSTRACT

We have evaluated a systematic e�ect on counts-in-cells analysis of deep, wide-�eld

galaxy catalogues induced by the evolution of clustering within the survey volume. A

multiplicative correction factor was determined, which can be applied after the higher

order correlation functions have been extracted in the usual way, without taking into

account the evolution. The general theory of this e�ect combined with the ansatz

describing the non-linear evolution of clustering in simulations enables us to estimate

the magnitude of the correction factor in di�erent cosmologies. In a series of numerical

calculations assuming an array of cold dark matter models, it is found that, as long

as galaxies are unbiased tracers of underlying density �eld, the e�ect is relatively

small (' 10%) for the shallow surveys (z < 0:2), while it becomes signi�cant (order of

unity) in deep surveys (z � 1). The required correction is comparable to or smaller

than the expected errors of on-going wide-�eld galaxy surveys such as the SDSS and

2dF. Therefore at present, the e�ect has to be taken into account for high precision

measurements at very small scales only, while in future deep surveys it amounts to a

signi�cant correction.

Subject headings: galaxies: clustering - galaxies: distances and redshifts - large-scale

structure of Universe - cosmology: theory - dark matter
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1. Introduction

Cosmological observations are necessarily carried out on a null hypersurface or a light-cone.

At low redshifts (z < 0:1), this can be regarded as to provide information on the constant-time

hypersurface (z = 0) which is a quite conventional implicit approximation underlying cosmological

studies using the galaxy redshift surveys. When the depth of the survey volume exceeds z � 0:1,

however, this approximation breaks down, and one should simultaneously consider the intrinsic

evolution of galaxy clustering and the light-cone e�ect in addition to any other selection e�ect

in interpreting the data. This is indeed the case for the on-going wide-�eld surveys of galaxies

including 2dF (2-degree Field Survey) and SDSS (Sloan Digital Sky Survey).

To our knowledge, the �rst quantitative consideration of the light-cone e�ect is made

by Nakamura, Matsubara, & Suto (1997) who derived the systematic bias in the estimate of

� � 

0:6
0
=b from magnitude-limited surveys of galaxies combining the cosmological redshift

distortion e�ect (Matsubara & Suto 1996) and the evolution of galaxy clustering within the

survey volume. In this paper, we examine the light-cone e�ect on higher-order statistics of galaxy

clustering, considering counts-in-cells analysis speci�cally.

Since the galaxy two-point correlation function does not contain phase information, the

N -point correlation functions are needed for full description. However, they have complex

dependence on their arguments, which makes their measurement and interpretation di�cult. This

is why the normalized, spatially averaged N -point correlation functions, SN 's (see e.g., Peebles

1980) became some of the most successful statistics for describing the higher order properties of

the galaxy density �eld. Next, we introduce the basic formulae needed to investigate the light-cone

e�ect on these objects.

Let us consider �rst the higher-order statistics on the idealistic constant-time hypersurface.

Denote the N -th order correlation functions at a redshift z by �N(r1; : : : ; rN ; z). Its volume-average

is written as

�N (R; z) =
1

vN

Z
v
d3r1 � � �d

3rN�N (r1; : : : ; rN ; z); (1)

where R is the comoving smoothing length to characterize the cell volume v. It is conventional to

use the normalized higher-order moments:

SN (R; z) �
�N (R; z)h

�
2
(R; z)

iN�1 : (2)

The hierarchical clustering ansatz states that SN(R; z) is constant and independent of the

scale R. This is a good approximation in nonlinear regimes, although a small but de�nite

scale-dependence is clearly detected from N-body experiments (Lahav et al. 1993; Suto 1993;

Matsubara & Suto 1994; Suto & Matsubara 1994; Jing & B�orner 1997). In addition, perturbation

theory predicts that �N(R; z) evolves in proportion to

h
�
2
(R; z)

iN�1
, and therefore SN (R; z) is

independent of time, i.e. it is constant with respect to z.
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The next section exposes the general theory of the light cone e�ect on SN (R; z) de�ned above.

Using the ansatz by Jain, Mo, & White (1995; hereafter JMW), x3 evaluates the appropriate

correction in an array of cold dark matter (CDM) models. Finally, x4 summarizes the results and

discusses the implications for redshift surveys.

2. Observing the higher-order moments on the light-cone

It is di�cult to estimate �N(R; z) or �N (r1; : : : ; rN ; z) observationally since z is changing

over the volume of galaxy sample. While in principle one could measure the N -point functions on

z = const surfaces, in practice this would result in a diminished volume, thus a signi�cant increase

of the errors. Instead it is more practical to extract the following N -th order correlation functions

averaged over the volumes on the light-cone:

�N (R;< zmax) �

Z zmax

0

z2dz w(z) �N (R; z)Z zmax

0

z2dz w(z)

: (3)

In the above expression, we assume that the observation is performed with the �xed solid angle,

and the sampling cells for the analysis are placed randomly in z-coordinate with w(z) being its

weighting function. If the cells were located randomly in the comoving coordinates, the volume

element z2dz should have been replaced by dA(z; 
0; �0)
2cjdt=dzjdz (dA is the angular diameter

distance; see, Nakamura et al. 1997) and thus the procedure itself becomes dependent on adopted

values of 
0 and �0.

In principle w(z) is an arbitrary function, and should be determined so as to maximize the

signal-to-noise ratio given the selection function of individual observation. By zmax we denote the

redshift corresponding to the depth of the survey. For a volume-limited sample, for instance, it is

natural to set w(z) = 1 and zmax as the maximum redshift of the sample.

Similarly we de�ne the (observable) higher-order moments averaged over the light-cone as

SN(R;< zmax) �
�N (R;< zmax)h

�
2
(R;< zmax)

iN�1 : (4)

It is useful to introduce the function G(z) which describes the evolution of the averaged

two-point correlation function:

�(R; z) = G(z)�(R; 0): (5)

In linear regime, G(z) is equivalent to [D(z)=D(0)]
2
where D(z) = D(z; 
0; �0) is the linear growth

rate:

D(z; 
0; �0) �

q

0(1 + z)3 + (1� 
0 � �0)(1 + z)2 + �0

�

Z
1

z

(1 + z0) dz0

[
0(1 + z0)3 + (1� 
0 � �0)(1 + z0)2 + �0]3=2
: (6)
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Although the above relation (5) does not exactly hold in the nonlinear regime, several

approximation formulae are derived in the literature, which empirically describe the evolution by

allowing G(z) depend on the scale R (see x3 for details).

If we adopt the evolution law (5), equation (4) is written as

SN(R;< zmax) =

Z zmax

0

z2dz w(z)SN(R; z) fG(z)g
N�1

�Z zmax

0

z2dz w(z)

�N�2
�Z zmax

0

z2dz w(z)G(z)

�N�1 : (7)

If zmax � 1, the above expression is expanded in terms of zmax as follows:

SN(R;< zmax) = SN (R; 0) +
3

4
S0N(0)zmax

+

�
3

160
(N � 1)(N � 2)SN(0)G

0

(0)
2
+

3

80
(N � 1)S0N(0)G

0

(0) +
3

10
S00N (0)

�
z2
max

+ O(z3
max

); (8)

where S0N (0) denotes @SN(R; z)=@zjz=0 and so on. The above expansion up to O(z2
max

) is valid as

long as the weighting function is well-approximated up to the same order:

w(zmax) = w(0) + w0(0)zmax+
1

2
w00(0)z2

max
: (9)

In other words, zmax should be set to be smaller than the e�ective window size of w(zmax).

It is interesting to note that up to O(z2
max

) equation (8) is independent of w(z), and that

O(zmax) term is determined only by S0N(0) independently of G(z). Since S0N(0) is expected to

vanish in linear theory (Fry 1984; Goro� et al. 1986, Bouchet et al. 1992; Bernardeau 1992), and

shown to be relatively small even in nonlinear regimes (Lahav et al. 1993 ; Colombi, Bouchet,

& Hernquist 1995, Szapudi et al. 1997), equation (8) implies that the light-cone e�ect is very

small for 2dF and SDSS galaxy redshift surveys (zmax < 0:2). It should be noted, however, that if

galaxies are biased relative to the mass density �eld, S0N (0) may not be necessarily small. So any

signal proportional to zmax provides a clear indication of the time-dependent biasing of galaxies

(see e.g., Fry 1996; Mo & White 1996; Mo, Jing & White 1997) independent of G(z) and w(z).

3. Evaluating the light-cone e�ect: an example

In order to evaluate the e�ect of observational average on the light-cone, we assume that

SN(R; z) does not evolve with z, i.e., SN (R; z) = SN(R; 0). As described above, this is a reasonable

approximation as long as galaxies are unbiased tracers of underlying density �eld. If we introduce

the measure of the light-cone e�ect:

�N (R;< zmax) �
SN(R;< zmax)

SN(R; 0)
� 1; (10)
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equations (7) and (8) with SN(R; z) = SN(R; 0) reduce to

�N(zmax) =
3

160
(N � 1)(N � 2)G0(0)2z2

max
+O(z3

max
): (11)

Note that (1+�N ) can be regarded as a correction factor as well, if one measures the SN 's without

considering the evolution of clustering. This constitutes a simple and practical method, which we

propose for future measurements, when compensation for the light cone e�ect is needed.

To evaluate the equation (7), we need a model for the evolution of variance G(z). For this

purpose, we adopt the ansatz originally put forward by Hamilton et al. (1991) and improved later

by Peacock & Dodds (1994), JMW and Peacock & Dodds (1996). To be speci�c, we apply the

�tting formula by JMW which relates the evolved two-point correlation function �E(R; z) with its

linear counterpart �L(R0; z) as follows:

�E(R; z) = B(n)F [�L(R0; z)=B(n)]; (12)

R0 =

h
1 + �E(z; R)

i
1=3

R; (13)

B(n) =

�
3 + n

3

�
0:8

; (14)

F (x) =
x + 0:45x2 � 0:02x5 + 0:05x6

1 + 0:02x3 + 0:003x9=2
: (15)

In the above equations, n denotes a power-law index of the power spectrum. JMW show that the

above formula works reasonably well even for CDM models by replacing n by the e�ective spectral

index evaluated at the scale which is just entering nonlinear regime. Generally, the resulting n

depends on z, but we neglect that dependence for simplicity. For galaxy surveys which we are

primarily interested in, the z-dependence of n near z = 0 is expected to be very small.

The inverse of equation (12) is formally written as

�L(R0; z) = B(n)F�1[�E(R; z)=B(n)]; (16)

and JMW also gives an empirical �t to F�1(y)

F�1(y) = y

 
1 + 0:036y1:93+ 0:0001y3

1 + 1:75y � 0:0015y3:63+ 0:028y4

!
1=3

: (17)

Using equation (16), one obtains

�
L
(R0; z) =

D2
(z)

D2
(0)

�
L
(R0; 0) =

D2
(z)

D2
(0)

B(n)F�1 [�E(R; 0)=B(n)]: (18)

Therefore we can express �E(R; z) in terms of �E(R; 0) as

�E(R; z) = B(n)F

"
D2

(z)

D2
(0)

F�1[�E(R; 0)=B(n)]

#
: (19)
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Let us introduce a parameter �(R) � F�1
h
�E(R; 0)=B(n)

i
which characterizes the variance

on a scale R at z = 0, and thus depends on 
0 and �0 through the shape of the uctuation

spectrum. Then the scale-dependent evolution factor G(z) = G(R; z) in equation (5) is given by

G(R; z) �
�E(R; z)

�E(R; 0)
=

1

F (�)
F

"
D2

(z)

D2
(0)

�

#
: (20)

For the convenience of z-expansion, we calculate the derivatives of the above quantity at

z = 0:

@G(R; z)

@z

����
z=0

= �2f0
�F 0(�)

F (�)
; (21)

@2G(R; z)

@z2

�����
z=0

= 4f 2

0

�2F 00(�)

F (�)
+

�
2f 2

0
+ 2f0q0 + 3
0

� �F 0(�)
F (�)

: (22)

where

f0 =
d lnD

da

����
z=0

; q0 =

0

2
� �0: (23)

The above expressions indicate how the light-cone e�ect depends on 
0 and �0 at zmax � 1. Note,

that they are involved in O(z2
max

) term and thus do not contribute signi�cantly at small z.

Using equations (7) and (20) and assuming SN (z) = SN (0), we can evaluate the evolutionary

e�ect on SN(R;< zmax) or �N(< zmax). As examples, we consider three representative CDM

models (Table 1) whose uctuation amplitude �8 is normalized so as to reproduce the abundances

of clusters of galaxies (Kitayama & Suto 1997; Kitayama, Sasaki & Suto 1997; see also Viana &

Liddle 1996; Eke, Cole, & Frenk 1996). The results are displayed on a series of �gures.

Figure 1 shows how � is related to the comoving smoothing length R in these models; �(R)

is plotted against log
10
R for SCDM, OCDM, and LCDM with solid, thin, and think dotted lines,

respectively. In the rest of the �gures, these models are plotted on the upper, middle and lower

panels, respectively, while di�erent orders, N = 3 : : :10, are plotted as a series of monotonically

increasing curves, and N = 3 and N = 7 emphasized with thick lines. Figure 2 displays �N (R; z)

as a function of log
10
z at R = 1h�1Mpc (left panels) and at R = 10h�1Mpc (right panels).

Finally, Figure 3 plots �N (R; z) against log10R for z = 0:2 (left panel), and z = 1 (right panel).

A discussion of the �gures follows in the next section.

4. Conclusions

The general appearance of the �gures suggests that the light-cone e�ect is a fairly robust

feature, although its details depend on the model. In all cases SCDM appears to give the strongest

e�ect, while for OCDM and LCDM it is slightly less pronounced; however the di�erence is fairly

small, qualitatively all models behave similarly. Note also, that the magnitude of the correction
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depends on the order N , and, in accord with intuition, it is monotonically increasing for higher

order.

As expected, the light-cone e�ect becomes larger as zmax increases, which can be seen in

Figure 2. Although the correction is relatively small for shallow surveys with z <
� 0:2 samples,

�N(R;< zmax) becomes
>
� 10% in nonlinear scales (R � 1h�1Mpc). In SCDM, for instance,

�N(R;< zmax) exceeds unity for N � 6 for the entire dynamic range plotted. Furthermore

Figure 3 indicates that even if the hierarchical ansatz is correct, i.e., SN(R; z) is independent of

R, the light-cone e�ect should generate apparent scale-dependence, since the correction behaves

di�erently at di�erent scales at a given redshift.

The future SDSS will be able to measure the moments of the galaxy density �eld with

unprecedented accuracy. If unforeseen systematics does not prevent it, it will determine them with

less than a few percent error for N � 3 and 10% for N = 4 between 1h�1Mpc : : :50h�1Mpc (see

Colombi, Szapudi, & Szalay 1997 for details). According to Figures 2, and 3, the light cone e�ect

will be much smaller than these errors, or at most same order, depending on the scale and model.

The correction could be potentially non-negligible only at the smallest scales. Similar conclusion

can probably be drawn about the 2dF survey. On the other hands, for future deep surveys, which

probably will be aimed at smaller scales, especially if carried out by Space Telescope or like

instruments, our calculations will be of utmost importance. According to Figure 3 the required

correction can range from up to unity for S3 through factors of few for S6 to factors of hundred

for S10.
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Table 1: CDM model parameters

Model 
0 �0 h �8

SCDM 1:0 0:0 0:5 0.6

OCDM 0:45 0:0 0:7 0:8

LCDM 0:3 0:7 0:7 1:0
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Fig. 1.| �(R) is plotted against log
10
R(1h�1Mpc) for SCDM (solid line), OCDM (thin dotted

line), and LCDM (thick dotted line) summarized in Table 1.
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Fig. 2.| log
10
�N(R; z) are shown as functions of log

10
z at R = 1h�1Mpc (left panels) and

10h�1Mpc (right panels); SCDM (top panels), OCDM (middle panels), and LCDM (bottom panels).

The family of curves display di�erent orders from N = 3 : : :N = 10 monotonically upward; for

N = 3, and N = 7 is plotted with thick lines for orientation.
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Fig. 3.| log
10
�N (R; z) are displayed as functions of log

10
R at z = 0:2 (left panels) and 1:0 (right

panels); SCDM (top panels), OCDM (middle panels), and LCDM (bottom panels). The family of

curves is the same as for Fig.2.


